I collaborate extensively with multi-institutional teams of clinicians and researchers to advance the development of tissue-engineered vascular grafts, using computational models of vascular behavior to predict surgical outcomes and define safety limits for cardiovascular function. These computational tools directly accelerate the clinical translation of new medical technologies.
In 2012, the first U.S. clinical trial of tissue-engineered vascular grafts (TEVGs) began at Nationwide Children’s Hospital in Columbus, Ohio. Previous studies in Japan had shown the efficacy of TEVGs to replace the synthetic grafts traditionally used in patients undergoing the Fontan procedure. However, upon imaging the first four patients in the U.S. trial 6 months post-operation, clinicians narrowing (a.k.a. stenosis) in the grafts. The clinical trial was paused to answer the questions “how does narrowing of TEVGs impact cardiovascular health?” and “what biomechanical factors drive the narrowing of TEVGs?”. To answer these questions, I created novel models of the post-operational Fontan cardiovascular system, including new quantification of pediatric exercise in single-ventricle patients and a fluid-structure-growth multiphysics solver capable of simulating changes in growth and remodeling in response to hemodynamic factors. These insights contributed to the renewal of the clinical trial, showing the ability of computational models to advance the adoption of medical technologies.
My work in clinical translation of computational models has continued and expanded to include investigations of aortic aneurysms, cerebral aneurysms, and cardiovascular devices.
Hemodynamic Performance of Tissue-engineered Vascular Grafts in Fontan Patients
Schwarz, E. L., Kelly, J. M., Blum, K. M., Hor, K. N., Yates, A. R., Zbinden, J. C., Verma, A., Lindsey, S. E., Ramachandra, A. B., Szafron, J. M., Humphrey, J. D., Shin’oka, T., Marsden, A. L., & Breuer, C. K. (2021)
NPJ Regenerative Medicine
Link
Oversized Conduits Predict Stenosis in Tissue Engineered Vascular Grafts
Blum, K. M., Turner, M. E., Schwarz, E. L., Best, C. A., Kelly, J. M., Yates, A. R., Hor, K. N., Matsuzaki, Y., Drews, J. D., Zakko, J., Shah, K., Shinoka, T., Humphrey, J. D., Marsden, A. L., & Breuer, C. K. (2025)
JACC: Basic to Translational Science
Link
Tissue Engineered Vascular Grafts Are Resistant to the Formation of Dystrophic Calcification
Turner, M. E., Blum, K. M., Watanabe, T., Schwarz, E. L., Nabavinia, M., Leland, J. T., Villarreal, D. J., Schwartzman, W. E., Chou, T., Baker, P. B., Matsumura, G., Krishnamurthy, R., Yates, A. R., Hor, K. N., Humphrey, J. D., Marsden, A. L., Stacy, M. R., Shinoka, T., & Breuer, C. K. (2024)
Nature communications
Link
Tissue Engineered Vascular Grafts Transform Into Autologous Neovessels Capable of Native Function and Growth
Blum, K. M., Zbinden, J. C., Ramachandra, A. B., Lindsey, S. E., Szafron, J. M., Reinhardt, J. W., Heitkemper, M., Best, C. A., Mirhaidari, G. J., Chang, Y., Ulziibayar, A., Kelly, J., Shah, K. V., Drews, J. D., Zakko, J., Miyamoto, S., Matsuzaki, Y., Iwaki, R., Ahmad, H., Daulton, R., Musgrave, D., Wiet, M. G., Heuer, E., Lawson, E., Schwarz, E. L., McDermott, M. R., Krishnamurthy, R., Krishnamurthy, R., Hor, K., Armstrong, A. K., Boe, B. A., Berman, D. P., Trask, A. J., Humphrey, J. D., Marsden, A. L., Shinoka, T., & Breuer, C. K. (2022)
Communications medicine
Link
Biodegradable External Wrapping Promotes Favorable Adaptation in an Ovine Vein Graft Model
Ramachandra, A. B., Wang, H., Wnorowski, A., Schwarz, E. L., Pickering, J., Heiler, J. C., Lucian, H. J., Hironaka, C. E., Tran, N. A., Liu, Y., Khan, M. O., Obafemi, O., Tada, Y., Kahn, A. M., Sayed, N., Wu, J. C., Humphrey, J. D., Boyd, J. H., & Marsden, A. L. (2022)
Acta biomaterialia
Link
Simulated Performance of a Bioprinted Pulsatile Fontan Conduit
Hu, Z., Schwarz, E. L., Herrmann, J., Skylar-Scott, M., & Marsden, A. (2022)
Bulletin of the American Physical Society
Link
Patient-specific Changes in Aortic Hemodynamics Is Associated with Thrombotic Risk After Fenestrated Endovascular Aneurysm Repair with Large Diameter Endografts
Tran, K., Feliciano, K. B., Yang, W., Schwarz, E. L., Marsden, A. L., Dalman, R. L., & Lee, J. T. (2022)
JVS-Vascular Science
Link
A Matched-pair Case Control Study Identifying Hemodynamic Predictors of Cerebral Aneurysm Growth Using Computational Fluid Dynamics
Weiss, A. J., Panduro, A. O., Schwarz, E. L., Sexton, Z. A., Lan, I. S., Geisbush, T. R., Marsden, A. L., & Telischak, N. A. (2023)
Frontiers in Physiology
Link
Feasibility of Using Patient-specific Models and the “Minimum Cut” Algorithm to Predict Optimal Ablation Targets for Left Atrial Flutter
Zahid, S., Whyte, K. N., Schwarz, E. L., III, R. C. B., Boyle, P. M., Chrispin, J., Prakosa, A., Ipek, E. G., Pashakhanloo, F., Halperin, H. R., Calkins, H., Berger, R. D., Nazarian, S., & Trayanova, N. A. (2016)
Heart rhythm
Link